
 

FAQs & their solutions for Module 8: 

Angular Momentum-II 
 

Question1:   The spin angular momentum operator for electron is given by 
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Where  x , y and z are Pauli spin matrices and are given by  
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Write the eigenvalues and eigenvectors of , and .x y zs s s  

 

 

Solution1: We first determine the eigenvalues of the x matrix which are determined from the 

following equation 
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Thus the eigenvalues of the x matrix are  1 and therefore the eigenvalues of sx are 
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if we measure sx [i.e., the x component of the spin angular momentum of a spin 
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electron, proton or neutron] then we will get only one of the two possible (eigen) values 
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eigenvalue equation is written as 
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Thus the eigenfunction is given by 
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If we normalize the eigenvector we will get 
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which is usually referred to as the “x-up” state. Similarly 
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represents the normalized eigenvector corresponding to the eigenvalue 
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  (of sx ) and is 

usually referred to as the “x-down” state. 

 

Since z is a diagonal matrix, the eigenvalues of z are just +1 and –1 implying that the 

eigenvalues of sz  are 
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determine and are given by 
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corresponding to the “z-up” state (eigenvalue 
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  of sz) and the “z-down” state (eigenvalue 
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  of sz) respectively. Finally the eigenvalues of  y are determined from the following 

equation 
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Thus the eigenvalues of sy are (again) 
2

1
  and 

2

1
 . Corresponding to the eigenvalue 
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the eigen function is determined from the equation 
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Thus 
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would represent the normalized “y-down” state. Similarly 
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would represent the normalized “y-up” state. 

 

 

 

Question2: A spin half particle is in the “z-up” state. On that particle, if we make a 

measurement of sx then what are the values that we will obtain and what will be their 

probabilities. 

 

Solution2: The spin half particle is in the “z-up” state. On that particle, if we make a 

measurement of sx then we will get one of the two eigenvalues of sx. In order to determine their 

probabilities we have to express the (normalized) “z-up” state as a linear combination of the 

(normalized) “x-up” and “x-down” states: 
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Thus, if we make a measurement of sx then the probability of obtaining a “x-up” state [i.e., the 

probability of obtaining the eigenvalue 
2

1
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Question3: The magnetic moment of the neutral Ag-atom is the same as that of an electron and 

is given by  
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whereq and m represent the charge and mass of the electron and 
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Such a particle is placed in a static magnetic field given by  

 ^z B 0B  (13) 

Obtain the eigenvalues and eigenfunctionsof  the energy associated with magnetic field. 

 

 



 

Solution3:  The magnetic moment of the neutral Ag-atom is the same as that of an electron and 

is given by  
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where x , y and z are Pauli spin matrices. If such a particle is placed in a static magnetic field 

given by  

 ^z B 0B  (16) 

then the potential energy associated with magnetic field would be given by  
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represents the Bohr magneton. Since the eigenvalues of z are +1 and -1, the solution of the 

eigenvalue equation  
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would be given by 
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Question4: Write the most general solution of the time dependent Schrodinger equation 
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Solution4 :   The most general solution of the time dependent Schrödinger equation  
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where  
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Further, the coefficients C1 and C2 are to be determined from the knowledge of |(t = 0) >: 
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and 
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Of course, if the system is initially in the | ẑ > or | ẑ > states, then it will remain in those 

states for all times to come; these are the stationary states of the problem.  

 

 

 

Question5: In continuation of the previous problem, we assume that at t = 0, the atom is in 

the x̂  state. Obtain the time evolution of the state and calculate the expectation values of 

, and .x y zs s s
 

 

Solution5:       

At t = 0, the atom is in the | x̂  > state. Since 
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Similarly C2 = 1/ 2 . Thus 
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where  
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Equation (21)(28) describes the time evolution of the state. Further, 

 

  



































i

i

ii

xx

e

e
ee

tts

01

10

4

1

)()(
2

1





  

or 

 tsx 0cos
2

1
  (30) 

Similarly 
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The above equations physically imply that the direction of the spin angular momentum vector 

rotates about the z-axis with angular velocity 0 .  

 

Question6:     Next consider the more general case when  
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Obtain the time evolution of the state. 

 

 

Solution6:        

 

We have 
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[when    /2, we obtain the results of the previous problem]. Obviously 
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